Rote instruction? Anchored instruction? Behaviourist teaching vs constructivism? What is best for
Today’s learner? Why did I highlight today’s over the other pedagogical terms in the opening sentences? Because today’s learner is different from the students of past generations. Not only have they grown up in a digital world they are entering a work force that is different from previous generations. Since the industrial revolution, education and career preparation (for the most part) have been based on behaviourist pedagogy, using rote techniques to prepare students for well-defined jobs. Most high school graduates headed into factory assembly, retail or other careers such as teaching and nursing. Teachers and nurses also followed the same pedagogical ideals “do it this way, this is best, this is how it has always been done”. Follow the rules and you will be fine. Most educators today realize that our system of educating our students has not changed all that much from the one room school house. But, the world has changed by leaps and bounds. By continuing with rote instruction techniques and rewarding students for good behaviour we are not preparing them for a world that has changed while education stood still. The Japer materials are responding to the need to transform education in order to provide students with the skills required in today’s work force; problem solving, critical thinking, creativity and collaboration to name a few. The creators of the Jasper project realized that students needed to not just understand computation skills and how to plug numbers into a formula but how to apply those skills, when to apply them, why they worked and how to construct their knowledge so it made sense in their world. Students needed to see links between math and science and the real world. Their world!I totally agree with the ideals of the Jasper program. I spent far too many years teaching the way things were always taught, looking out at a sea of bored, disengaged students who either played the game to get along or acted out because they could care less. A very troubling result of this is that more and more of my students lost their creativity, or school had killed it. When given assignments, they were interested in only one thing: how do I do this to get it done, and get a good enough grade. They wanted to be spoon fed step by step instructions because they had learned that is how you survive. You may die of boredom but you graduated. Conform, do it the way you were shown and sit quietly may have made for some easy to manage classrooms but what have we created? Generations of graduates who do not know how to think for themselves. Class upon class of kids who learned that talking in class was wrong and collaboration is like cheating. How do we expect them to function in a work force that now prizes these skills?We need to move away from teaching isolated rote skills and begin to use other techniques such as anchored instruction. The Cognition & Technology Group at Vanderbilt (CTGV, 1990a) defined anchored” instruction as;instruction is situated in engaging, problem-rich environments that allow sustained exploration by students and teachers. In the process, they come to understand why, when, and how to use various concepts and strategies (e.g., Brown, Collins, & Duguid, 1989; CTGV, 1990). The anchors create a “macrocontext” that provides a common ground for experts in various areas, as well as teachers and students from diverse backgrounds, to communicate in ways that build collective understanding (Bransford, Sherwood, Hasselbring, Kinzer, & Williams, 1990; CTGV, 1991a). Macrocontexts are also designed to facilitate experimentation by researchers who want to compare the effects of using them in conjunction with different types of teaching strategies (p. 65). CTGV (1992a) created the Jasper Woodbury Problem Solving Series,” a set of specially designed video-based adventures that provide a motivating and realistic context for problem posing, problem solving, and reasoning. The series also allows students, teachers, and others to integrate knowledge from a variety of areas, such as mathematics, science, history, and literature (p. 65). Each problem in the video series begins by having students watch a problem story. (When first introduced to the video students do not know they will be solving a problem or what that problem may be). When the story is finished, various mini scenarios are presented. The scenarios begin more simply with using presented information (students have the opportunity to go back and rewatch all or portions of the video story at any time) to solve more basic problems. After the initial straight forward problems are addressed more abstract problems requiring more advanced math and science skills are introduced.The study by Vye et Al. (1997) Complex mathematical problem solving by individuals and dyads looked at a group of first year college students and high functioning 6th grade math students. Both groups were introduced to a Jasper Woodley video problem (The Big Splash) and asked to complete the various sub problems individually. A second experiment used fifth grade dyads to solve the same problems. It must be noted that:Solutions to Jasper problems involve multiple goals that have a hierarchical structure, numerous constraints, multiple-solution options, and multiple-solution paths. Some of the cognitive processes involved in solving Jasper problems include formulating the subproblems needed to solve the overall problem, organizing the subproblems into solution plans, coordinating relevant data with appropriate subproblems, distinguishing relevant from irrelevant data, formulating computational procedures to solve subproblems and the overall problem, and determining the feasibility of alternative plans. Traditional school environments produce students who are ill-prepared to solve problems requiring the coordinated use of such processes; presumably because of this, Jasper problems are difficult to solve (p. 438). Researchers found that in experiment 1 individuals solving the trip-planning problems failed to consider multiple plans perhaps because students may have felt that, once they had a solution, they had met the requirement (p. 471). While the college students outperformed the sixth-grade high functioning math students on most subtests it is interesting to note that the grade five math dyads performed more like the college students and the dyads often looked at multiple solutions (something that did not readily occur in experiment 1). “The explanation for the similarities across fifth-grade and college students may be in the degree to which members of a dyad can monitor the solution process and keep in mind the constraints and search space relevant to the problem. Members of the dyad may fluidly adopt different roles in problem solving as they switch between being listener and speaker in the verbal interaction (p. 479).”Vye et Al. (1997) study highlighted an important pedagogical technique, allowing students to work in groups. In the group setting students can benefit from the skills and knowledge others bring to the group. It seems to be an effective method of using Shulman’s (1990) Pedagogical Content Knowledge (PCK) outside of direct teaching. Students have the opportunity to share what they know and may be able to teach others how they understand it. I often find students find ingenious ways of helping others understand difficult problems. This group method also extends to Mishra and Koehler’s (2006) TPACK model. Including access to technology for all groups is an excellent way to share the knowledge of students in the class and the technology skills they may possess.The research by Hasselbring et Al. (2005) concluded that anchored instruction in groups enabled students, even those with math difficulty “to transfer skills learned during instruction to a variety of problems. These findings indicate that a much more robust relationship between these students’ declarative, procedural, and conceptual knowledge was developed (np).”In terms of technology that is available today (In what ways do contemporary videos available for math instruction and their support materials (c.f. Khan Academy, Crash Course, BBC Learn “Classroom Clips” and “Academic Earth”, video clips in Number Worlds, or others) address or not address these issues?) I think educators will easily find programs that use rote pedagogy to help students learn a skill. I also believe for many this is the only thing they look for, a game like interface that drills basic skill. I do believe there are valuable programs out there that are like the Jasper Woodley series but I believe they are far less used. Why? As mentioned in several of the ETEC 533 interviews: Time, accessibility and teacher understanding. Teachers do not have the time to learn these new programs with a confidence level needed to use it in a classroom situation. Access to technology is a huge problem in many schools (hardware, software and broadband issues). Teachers do not have the skill to troubleshoot problems and feel too much time is wasted in a class if technology crashes.Personally, I believe many staff members feel overwhelmed by the possibilities and therefore it is easier to do what has always been accepted and done rather than take the chance to try something new (similar to our students wanting to know exactly how to proceed with a project so they don’t go off course). It is time we take chances and show our students it is ok to not do something right. That we don’t give up, we try again. That we collaborate and problem solve, that we practice critical thinking and looking for alternatives. As I have said before our students at every age are capable of amazing things if they are given the opportunity to demonstrate it. Programs based on anchored instruction like the Jasper Woodley series need to become the norm rather than the exception. Reference:Cognition and Technology Group at Vanderbilt (1992a). The Jasper experiment: An exploration of issues in learning and instructional design. Educational Technology, Research and Development, 40(1), 65-80Cognition and Technology Group at Vanderbilt (1992b). The Jasper series as an example of anchored instruction: Theory, program, description, and assessment data. Educational Psychologist, 27(3), 291-315Hasselbring, T. S., Lott, A. C., & Zydney, J. M. (2005). Technology-supported math instruction for students with disabilities: Two decades of research and development. Retrieved December, 12, 2013 from Google Scholar as a pdf. Mishra, P., & Koehler, M. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. The Teachers College Record, 108(6), 1017-1054Shulman, L.S. (1987). Knowledge and teaching. The foundations of a new reform. Harvard Educational Review, 57(1)1-23 Vye, Nancy J.; Goldman, Susan R.; Voss, James F.; Hmelo, Cindy; Williams, Susan (1997). Complex mathematical problem solving by individuals and dyads. Cognition and Instruction, 15(4), 435-450Posted in B. Anchored Instruction Symposium, e-folio, Uncategorized on February 5, 2017 by catherine sverko. 2 Comments Edit
0 Comments
## Leave a Reply. |
## AuthorCatherine is currently enrolled in her final course for her Master of Educational Technology Degree at UBC. She is an elementary teacher and a huge fan of Makerspaces. ## Archives
April 2017
## Categories |

Proudly powered by Weebly